Abstract
By means of ϵ and large N expansions, we study generalizations of the O(N) model where the fundamental fields are tensors of rank r rather than vectors, and where the global symmetry (up to additional discrete symmetries and quotients) is O(N)r, focusing on the cases r ≤ 5. Owing to the distinct ways of performing index contractions, these theories contain multiple quartic operators, which mix under the RG flow. At all large N fixed points, melonic operators are absent and the leading Feynman diagrams are bubble diagrams, so that all perturbative fixed points can be readily matched to full large N solutions obtained from Hubbard-Stratonovich transformations. The family of fixed points we uncover extend to arbitrary higher values of r, and as their number grows superexponentially with r, these theories offer a vast generalization of the critical O(N) model. We also study sextic O(N)r theories, whose large N limits are obscured by the fact that the dominant Feynman diagrams are not restricted to melonic or bubble diagrams. For these theories the large N dynamics differ qualitatively across different values of r, and we demonstrate that the RG flows possess a numerous and diverse set of perturbative fixed points beginning at rank four.
Original language | English |
---|---|
Article number | 35 |
Journal | Journal of High Energy Physics |
Volume | 2024 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2024 |
Keywords
- 1/N Expansion
- Renormalization Group
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics