Revealing the MRI-Contrast in Optically Cleared Brains

Shimrit Oz, Galit Saar, Shunit Olszakier, Ronit Heinrich, Mykhail O. Kompanets, Shai Berlin

Research output: Contribution to journalArticlepeer-review

Abstract

The current consensus holds that optically-cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue-clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI-contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast. Furthermore, it remains unknown whether non-delipidating clearing methods can produce MRI-compatible specimens or whether MRI-contrast can be re-established. These limitations hinder the development of multimodal MRI-light-microscopy (LM) imaging approaches. This study assesses the relation between MRI-contrast, and delipidation in optically-cleared whole brains following different tissue-clearing approaches. It is demonstrated that uDISCO and ECi-brains are MRI-compatible upon tissue rehydration, despite both methods’ substantial delipidating-nature. It is also demonstrated that, whereas Scale-clearing preserves most lipids, Scale-cleared brain lack MRI-contrast. Furthermore, MRI-contrast is restored to lipid-free CLARITY-brains without introducing lipids. Our results thereby dissociate between the essentiality of lipids to MRI-contrast. A tight association is found between tissue expansion, hyperhydration and loss of MRI-contrast. These findings then enabled us to develop a multimodal MRI-LM-imaging approach, opening new avenues to bridge between the micro- and mesoscale for biomedical research and clinical applications.

Original languageEnglish
Article number2400316
Pages (from-to)e2400316
JournalAdvanced Science
Volume11
Issue number22
DOIs
StatePublished - 12 Jun 2024

Keywords

  • Animals
  • Brain/diagnostic imaging
  • Contrast Media
  • MRI-contrast
  • Magnetic Resonance Imaging/methods
  • Mice
  • brain
  • lipids
  • multimodal-imaging
  • tissue-clearing

All Science Journal Classification (ASJC) codes

  • General Engineering
  • General Chemical Engineering
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • General Materials Science
  • General Physics and Astronomy
  • Medicine (miscellaneous)

Fingerprint

Dive into the research topics of 'Revealing the MRI-Contrast in Optically Cleared Brains'. Together they form a unique fingerprint.

Cite this