Abstract
The current consensus holds that optically-cleared specimens are unsuitable for Magnetic Resonance Imaging (MRI); exhibiting absence of contrast. Prior studies combined MRI with tissue-clearing techniques relying on the latter's ability to eliminate lipids, thereby fostering the assumption that lipids constitute the primary source of ex vivo MRI-contrast. Nevertheless, these findings contradict an extensive body of literature that underscores the contribution of other features to contrast. Furthermore, it remains unknown whether non-delipidating clearing methods can produce MRI-compatible specimens or whether MRI-contrast can be re-established. These limitations hinder the development of multimodal MRI-light-microscopy (LM) imaging approaches. This study assesses the relation between MRI-contrast, and delipidation in optically-cleared whole brains following different tissue-clearing approaches. It is demonstrated that uDISCO and ECi-brains are MRI-compatible upon tissue rehydration, despite both methods’ substantial delipidating-nature. It is also demonstrated that, whereas Scale-clearing preserves most lipids, Scale-cleared brain lack MRI-contrast. Furthermore, MRI-contrast is restored to lipid-free CLARITY-brains without introducing lipids. Our results thereby dissociate between the essentiality of lipids to MRI-contrast. A tight association is found between tissue expansion, hyperhydration and loss of MRI-contrast. These findings then enabled us to develop a multimodal MRI-LM-imaging approach, opening new avenues to bridge between the micro- and mesoscale for biomedical research and clinical applications.
Original language | English |
---|---|
Article number | 2400316 |
Pages (from-to) | e2400316 |
Journal | Advanced Science |
Volume | 11 |
Issue number | 22 |
DOIs | |
State | Published - 12 Jun 2024 |
Keywords
- Animals
- Brain/diagnostic imaging
- Contrast Media
- MRI-contrast
- Magnetic Resonance Imaging/methods
- Mice
- brain
- lipids
- multimodal-imaging
- tissue-clearing
All Science Journal Classification (ASJC) codes
- General Engineering
- General Chemical Engineering
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- General Materials Science
- General Physics and Astronomy
- Medicine (miscellaneous)