Rethinking lossy compression: The rate-distortion-perception tradeoff

Yochai Blau, Tomer Michaeli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Lossy compression algorithms arc typically designed and analyzed through the lens of Shannon's rate-distortion theory, where the goal is to achieve the lowest possible distortion (e.g., low MSE or high SSIM) at any given bit rate. However, in recent years, it has become increasingly accepted that "low distortion" is not a synonym for "high perceptual quality", and in fact optimization of one often comes at the expense of the other. In light of this understanding, it is natural to seek for a generalization of rate-distortion theory which takes perceptual quality into account. In this paper, we adopt the mathematical definition of perceptual quality recently proposed by Blau & Michaeli (2018), and use it to study the three-way tradeoff between rate, distortion, and perception. We show that restricting the perceptual quality to be high, generally leads to an elevation of the rate-distortion curve, thus necessitating a sacrifice in either rate or distortion. We prove several fundamental properties of this triple-tradeoff, calculate it in closed form for a Bernoulli source, and illustrate it visually on a toy MNIST example.

Original languageEnglish
Title of host publication36th International Conference on Machine Learning, ICML 2019
Pages1081-1091
Number of pages11
ISBN (Electronic)9781510886988
StatePublished - 2019
Event36th International Conference on Machine Learning, ICML 2019 - Long Beach, United States
Duration: 9 Jun 201915 Jun 2019

Publication series

Name36th International Conference on Machine Learning, ICML 2019
Volume2019-June

Conference

Conference36th International Conference on Machine Learning, ICML 2019
Country/TerritoryUnited States
CityLong Beach
Period9/06/1915/06/19

All Science Journal Classification (ASJC) codes

  • Education
  • Computer Science Applications
  • Human-Computer Interaction

Fingerprint

Dive into the research topics of 'Rethinking lossy compression: The rate-distortion-perception tradeoff'. Together they form a unique fingerprint.

Cite this