Abstract
We prove two rigidity theorems for maps between Riemannian manifolds. First, we prove that a Lipschitz map f: M→ N between two oriented Riemannian manifolds, whose differential is almost everywhere an orientation-preserving isometry, is an isometric immersion. This theorem was previously proved using regularity theory for conformal maps; we give a new, simple proof, by generalizing the Piola identity for the cofactor operator. Second, we prove that if there exists a sequence of mapping fn: M→ N, whose differentials converge in Lp to the set of orientation-preserving isometries, then there exists a subsequence converging to an isometric immersion. These results are generalizations of celebrated rigidity theorems by Liouville (J Math Pures Appl 1850) and Reshetnyak (Sib Mat Zhurnal 8(1):91–114, 1967) from Euclidean to Riemannian settings. Finally, we describe applications of these theorems to non-Euclidean elasticity and to convergence notions of manifolds.
Original language | English |
---|---|
Pages (from-to) | 367-408 |
Number of pages | 42 |
Journal | Archive for Rational Mechanics and Analysis |
Volume | 231 |
Issue number | 1 |
DOIs | |
State | Published - 22 Jan 2019 |
All Science Journal Classification (ASJC) codes
- Analysis
- Mathematics (miscellaneous)
- Mechanical Engineering