TY - JOUR
T1 - Relationships between xylem embolism and tree functioning during drought, recovery, and recurring drought in Aleppo pine
AU - Wagner, Yael
AU - Volkov, Mila
AU - Nadal-Sala, Daniel
AU - Ruehr, Nadine Katrin
AU - Hochberg, Uri
AU - Klein, Tamir
N1 - Publisher Copyright: © 2023 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
PY - 2023/9
Y1 - 2023/9
N2 - Recent findings suggest that trees can survive high levels of drought-induced xylem embolism. In many cases, the embolism is irreversible and, therefore, can potentially affect post-drought recovery and tree function under recurring droughts. We examined the development of embolism in potted Aleppo pines, a common species in hot, dry Mediterranean habitats. We asked (1) how post-drought recovery is affected by different levels of embolism and (2) what consequences this drought-induced damage has under a recurring drought scenario. Young trees were dehydrated to target water potential (Ψx) values of −3.5, −5.2 and −9.5 MPa (which corresponded to ~6%, ~41% and ~76% embolism), and recovery of the surviving trees was measured over an 8-months period (i.e., embolism, leaf gas-exchange, Ψx). An additional group of trees was exposed to Ψx of −6.0 MPa, either with or without preceding drought (Ψx of −5.2 MPa) to test the effect of hydraulic damage during repeated drought. Trees that reached −9.5 MPa died, but none from the other groups. Embolism levels in dying trees were on average 76% of conductive xylem and no tree was dying below 62% embolism. Stomatal recovery was negatively proportional to the level of hydraulic damage sustained during drought, for at least a month after drought relief. Trees that experienced drought for the second time took longer to reach fatal Ψx levels than first-time dehydrating trees. Decreased stomatal conductance following drought can be seen as “drought legacy,” impeding recovery of tree functioning, but also as a safety mechanism during a consecutive drought.
AB - Recent findings suggest that trees can survive high levels of drought-induced xylem embolism. In many cases, the embolism is irreversible and, therefore, can potentially affect post-drought recovery and tree function under recurring droughts. We examined the development of embolism in potted Aleppo pines, a common species in hot, dry Mediterranean habitats. We asked (1) how post-drought recovery is affected by different levels of embolism and (2) what consequences this drought-induced damage has under a recurring drought scenario. Young trees were dehydrated to target water potential (Ψx) values of −3.5, −5.2 and −9.5 MPa (which corresponded to ~6%, ~41% and ~76% embolism), and recovery of the surviving trees was measured over an 8-months period (i.e., embolism, leaf gas-exchange, Ψx). An additional group of trees was exposed to Ψx of −6.0 MPa, either with or without preceding drought (Ψx of −5.2 MPa) to test the effect of hydraulic damage during repeated drought. Trees that reached −9.5 MPa died, but none from the other groups. Embolism levels in dying trees were on average 76% of conductive xylem and no tree was dying below 62% embolism. Stomatal recovery was negatively proportional to the level of hydraulic damage sustained during drought, for at least a month after drought relief. Trees that experienced drought for the second time took longer to reach fatal Ψx levels than first-time dehydrating trees. Decreased stomatal conductance following drought can be seen as “drought legacy,” impeding recovery of tree functioning, but also as a safety mechanism during a consecutive drought.
UR - http://www.scopus.com/inward/record.url?scp=85169607768&partnerID=8YFLogxK
U2 - 10.1111/ppl.13995
DO - 10.1111/ppl.13995
M3 - مقالة
C2 - 37882273
SN - 0031-9317
VL - 175
JO - Physiologia Plantarum
JF - Physiologia Plantarum
IS - 5
M1 - e13995
ER -