Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species

Tamir Klein, Idan Shpringer, Ben Fikler, Gil Elbaz, Shabtai Cohen, Dan Yakir

Research output: Contribution to journalArticlepeer-review

Abstract

This study aims to test the hypothesis that as leaf water potential decreases, stomatal conductance (gs) and total water use decrease faster in trees tending toward isohydric behavior than in coexisting anisohydric trees.We measured leaf gas exchange rates in two key Mediterranean species: Pinus halepensis (isohydric) and Quercus calliprinos (anisohydric) growing together in two different sites during seven field campaigns over 14months. Intrinsic water-use efficiency (WUEi) was calculated from gas exchange ratios, and independently from carbon isotopic composition, δ13C, of annual tree-ring sub-sections in four representative growth years.As expected, gs was greatly restricted already at VPD<3kPa in pine trees whereas in oak trees gs was dynamically adjusted even at VPD>5kPa. Consequently, mean transpiration rates were 0.2-2.2 and 0.5-3.9mmolm2s-1 in coexisting pines and oaks, respectively. Mean δ13C values were 1.5‰ higher in tree-rings of the pine compared to the oak trees, consistent with the differences in WUEi between 75 and 64μmol CO2mol-1 H2O in pines and oaks, respectively, based on the short-term gas exchange measurements.A preliminary attempt to upscale the results to typical forest stands of the two species, on annual time-scales, demonstrated that the differences in stomatal regulation and water-use could imply ~30% higher water-use (or ~70% lower water yield) in oak stand compared to pine stand, related to its tendency toward anisohydric behavior. This sets the limit for typical 300treesha-1 oak and pine stands at the 460 and 360mm iso-precipitation lines, respectively, consistent with their current distribution along the precipitation gradient in our region. The results can help predict or manage changes in species composition in the face of increasing water limitations in Mediterranean regions.

Original languageEnglish
Pages (from-to)34-42
Number of pages9
JournalForest Ecology and Management
Volume302
DOIs
StatePublished - 5 Aug 2013

All Science Journal Classification (ASJC) codes

  • Forestry
  • Nature and Landscape Conservation
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species'. Together they form a unique fingerprint.

Cite this