Regulation of Stem Cell Differentiation by Control of Retinoic Acid Gradients in Hydrospun 3D Scaffold

Roey Tzezana, Stanislav Reznik, Jacob Blumenthal, Eyal Zussman, Shulamit Levenberg

Research output: Contribution to journalArticlepeer-review

Abstract

Morphogen gradients have been associated with differential gene expression and are implicated in the triggering and regulation of developmental biological processes. This study focused on creating morphogenic gradients through the thickness of hydrospun scaffolds. Specifically, electrospun poly(ε-caprolactone) fibers were loaded with all-trans-retinoic acid (ATRA), and designed to release ATRA at a predetermined rate. Multilayered scaffolds designed to present varied initial ATRA concentrations were then exposed to flow conditions in a bioreactor. Gradient formation was verified by a simple convection-diffusion mathematical model approving establishment of a continuous solute gradient across the scaffold. The biological value of the designed gradients in scaffolds was evaluated by monitoring the fate of murine embryonal carcinoma cells embedded within the scaffolds. Cell differentiation within the different layers matched the predictions set forth by the theoretical model, in accordance with the ATRA gradient formed across the scaffold. This tool bears powerful potential in establishing in vitro simulation models for better understanding the inner workings of the embryo.

Original languageEnglish
Pages (from-to)598-607
Number of pages10
JournalMacromolecular Bioscience
Volume12
Issue number5
DOIs
StatePublished - May 2012

Keywords

  • Diffusion
  • Drug delivery systems
  • Fibers
  • Poly(ε-caprolactone)
  • Tissue engineering

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Materials Chemistry
  • Polymers and Plastics
  • Biotechnology
  • Biomaterials

Fingerprint

Dive into the research topics of 'Regulation of Stem Cell Differentiation by Control of Retinoic Acid Gradients in Hydrospun 3D Scaffold'. Together they form a unique fingerprint.

Cite this