Regional positioning using a low Earth orbit satellite constellation

Tomer Shtark, Pini Gurfil

Research output: Contribution to journalArticlepeer-review

Abstract

Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth’s second zonal harmonic coefficient, the simulations include the Earth’s gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

Original languageEnglish
Article number14
JournalCelestial Mechanics and Dynamical Astronomy
Volume130
Issue number2
DOIs
StatePublished - 1 Feb 2018

Keywords

  • GDOP optimization
  • LEO constellations
  • Regional coverage
  • Satellite constellations design

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Mathematical Physics
  • Astronomy and Astrophysics
  • Space and Planetary Science
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Regional positioning using a low Earth orbit satellite constellation'. Together they form a unique fingerprint.

Cite this