TY - GEN
T1 - Recovering AES Keys with a Deep Cold Boot Attack
AU - Zimerman, Itamar
AU - Nachmani, Eliya
AU - Wolf, Lior
N1 - Publisher Copyright: Copyright © 2021 by the author(s)
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down. While most of the bits have been corrupted, many bits, at random locations, have not. Since the keys in many encryption schemes are being expanded in memory into longer keys with fixed redundancies, the keys can often be restored. In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys. Even though AES consists of Rijndael S-box elements, that are specifically designed to be resistant to linear and differential cryptanalysis, our method provides a novel formalization of the AES key scheduling as a computational graph, which is implemented by a neural message passing network. Our results show that our methods outperform the state of the art attack methods by a very large margin.
AB - Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down. While most of the bits have been corrupted, many bits, at random locations, have not. Since the keys in many encryption schemes are being expanded in memory into longer keys with fixed redundancies, the keys can often be restored. In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys. Even though AES consists of Rijndael S-box elements, that are specifically designed to be resistant to linear and differential cryptanalysis, our method provides a novel formalization of the AES key scheduling as a computational graph, which is implemented by a neural message passing network. Our results show that our methods outperform the state of the art attack methods by a very large margin.
UR - http://www.scopus.com/inward/record.url?scp=85161299596&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - Proceedings of Machine Learning Research
SP - 12955
EP - 12966
BT - Proceedings of the 38th International Conference on Machine Learning, ICML 2021
PB - ML Research Press
T2 - 38th International Conference on Machine Learning, ICML 2021
Y2 - 18 July 2021 through 24 July 2021
ER -