Rapid ensemble measurement of protein diffusion and probe blinking dynamics in cells

Simon Sehayek, Xiyu Yi, Shimon Weiss, Paul W. Wiseman

Research output: Contribution to journalArticlepeer-review

Abstract

We present a fluorescence fluctuation image correlation analysis method that can rapidly and simultaneously measure the diffusion coefficient, photoblinking rates, and fraction of diffusing particles of fluorescent molecules in cells. Unlike other image correlation techniques, we demonstrated that our method could be applied irrespective of a nonuniformly distributed, immobile blinking fluorophore population. This allows us to measure blinking and transport dynamics in complex cell morphologies, a benefit for a range of super-resolution fluorescence imaging approaches that rely on probe emission blinking. Furthermore, we showed that our technique could be applied without directly accounting for photobleaching. We successfully employed our technique on several simulations with realistic EMCCD noise and photobleaching models, as well as on Dronpa-C12-labeled β-actin in living NIH/3T3 and HeLa cells. We found that the diffusion coefficients measured using our method were consistent with previous literature values. We further found that photoblinking rates measured in the live HeLa cells varied as expected with changing excitation power.

Original languageEnglish
Article number100015
JournalBiophysical Reports
Volume1
Issue number2
DOIs
StatePublished - 8 Dec 2021

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Biophysics
  • Biochemistry
  • Biotechnology

Fingerprint

Dive into the research topics of 'Rapid ensemble measurement of protein diffusion and probe blinking dynamics in cells'. Together they form a unique fingerprint.

Cite this