Abstract
Network management protocols often require timely and meaningful insight about per flow network traffic. This paper introduces Randomized Admission Policy RAP -a novel algorithm for the frequency, top-k, and byte volume estimation problems, which are fundamental in network monitoring. We demonstrate space reductions compared to the alternatives, for the frequency estimation problem, by a factor of up to 32 on real packet traces and up to 128 on heavy-tailed workloads. For top-$k$ identification, RAP exhibits memory savings by a factor of between 4 and 64 depending on the workloads' skewness. These empirical results are backed by formal analysis, indicating the asymptotic space improvement of our probabilistic admission approach. In Addition, we present d-way RAP, a hardware friendly variant of RAP that empirically maintains its space and accuracy benefits.
| Original language | English |
|---|---|
| Article number | 3370594 |
| Pages (from-to) | 1432-1445 |
| Number of pages | 14 |
| Journal | IEEE/ACM Transactions on Networking |
| Volume | 27 |
| Issue number | 4 |
| DOIs | |
| State | Published - 1 Aug 2019 |
Keywords
- Algorithm design and analysis
- approximation algorithms
All Science Journal Classification (ASJC) codes
- Software
- Computer Science Applications
- Computer Networks and Communications
- Electrical and Electronic Engineering