Quantum sparse coding

Yaniv Romano, Harel Primack, Talya Vaknin, Idan Meirzada, Ilan Karpas, Dov Furman, Chene Tradonsky, Ruti Ben Shlomi

Research output: Contribution to journalArticlepeer-review

Abstract

The ultimate goal of any sparse coding method is to accurately recover from a few noisy linear measurements, an unknown sparse vector. Unfortunately, this estimation problem is NP-hard in general, and it is therefore always approached with an approximation method, such as lasso or orthogonal matching pursuit, thus trading off accuracy for less computational complexity. In this paper, we develop a quantum-inspired algorithm for sparse coding, with the premise that the emergence of quantum computers and Ising machines can potentially lead to more accurate estimations compared to classical approximation methods. To this end, we formulate the most general sparse coding problem as a quadratic unconstrained binary optimization (QUBO) task, which can be efficiently minimized using quantum technology. To derive at a QUBO model that is also efficient in terms of the number of spins (space complexity), we separate our analysis into three different scenarios. These are defined by the number of bits required to express the underlying sparse vector: binary, 2-bit, and a general fixed-point representation. We finally conduct numerical experiments with simulated data on LightSolver’s quantum-inspired digital platform to verify the correctness of our QUBO formulation and to demonstrate that we obtain more accurate solutions compared to baseline methods.

Original languageEnglish
Article number4
JournalQuantum Machine Intelligence
Volume6
Issue number1
DOIs
StatePublished - Jun 2024
Externally publishedYes

Keywords

  • Compressed sensing
  • Feature selection
  • Quantum annealing
  • Simulated annealing
  • Sparse pursuit
  • Sparse regularization

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence
  • Theoretical Computer Science
  • Applied Mathematics
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Quantum sparse coding'. Together they form a unique fingerprint.

Cite this