Quantum FHE (Almost) As Secure As Classical

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Fully homomorphic encryption schemes (FHE) allow to apply arbitrary efficient computation to encrypted data without decrypting it first. In Quantum FHE (QFHE) we may want to apply an arbitrary quantumly efficient computation to (classical or quantum) encrypted data. We present a QFHE scheme with classical key generation (and classical encryption and decryption if the encrypted message is itself classical) with comparable properties to classical FHE. Security relies on the hardness of the learning with errors (LWE) problem with polynomial modulus, which translates to the worst case hardness of approximating short vector problems in lattices to within a polynomial factor. Up to polynomial factors, this matches the best known assumption for classical FHE. Similarly to the classical setting, relying on LWE alone only implies leveled QFHE (where the public key length depends linearly on the maximal allowed evaluation depth). An additional circular security assumption is required to support completely unbounded depth. Interestingly, our circular security assumption is the same assumption that is made to achieve unbounded depth multi-key classical FHE. Technically, we rely on the outline of Mahadev (arXiv 2017) which achieves this functionality by relying on super-polynomial LWE modulus and on a new circular security assumption. We observe a connection between the functionality of evaluating quantum gates and the circuit privacy property of classical homomorphic encryption. While this connection is not sufficient to imply QFHE by itself, it leads us to a path that ultimately allows using classical FHE schemes with polynomial modulus towards constructing QFHE with the same modulus.

Original languageEnglish
Title of host publicationAdvances in Cryptology – CRYPTO 2018 - 38th Annual International Cryptology Conference, 2018, Proceedings
EditorsHovav Shacham, Alexandra Boldyreva
PublisherSpringer-Verlag Italia
Pages67-95
Number of pages29
ISBN (Print)9783319968773
DOIs
StatePublished Online - 24 Jul 2018
Event38th Annual International Cryptology Conference, CRYPTO 2018 - Santa Barbara, United States
Duration: 19 Aug 201823 Aug 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10993 LNCS
ISSN (Print)0302-9743

Conference

Conference38th Annual International Cryptology Conference, CRYPTO 2018
Country/TerritoryUnited States
CitySanta Barbara
Period19/08/1823/08/18

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Quantum FHE (Almost) As Secure As Classical'. Together they form a unique fingerprint.

Cite this