Quantitative structure - Property relationship modeling of remote liposome loading of drugs

Ahuva Cern, Alexander Golbraikh, Aleck Sedykh, Alexander Tropsha, Yechezkel Barenholz, Amiram Goldblum

Research output: Contribution to journalArticlepeer-review

Abstract

Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R 2 for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments.

Original languageEnglish
Pages (from-to)147-157
Number of pages11
JournalJournal of Controlled Release
Volume160
Issue number2
DOIs
StatePublished - 10 Jun 2012

Keywords

  • Chemical descriptors
  • Liposome
  • Loading conditions
  • Loading efficiency
  • QSPR
  • Remote loading

All Science Journal Classification (ASJC) codes

  • Pharmaceutical Science

Fingerprint

Dive into the research topics of 'Quantitative structure - Property relationship modeling of remote liposome loading of drugs'. Together they form a unique fingerprint.

Cite this