TY - JOUR
T1 - Quantifiable predictive features define epitope-specific T cell receptor repertoires
AU - Dash, Pradyot
AU - Fiore-Gartland, Andrew J.
AU - Hertz, Tomer
AU - Wang, George C.
AU - Sharma, Shalini
AU - Souquette, Aisha
AU - Crawford, Jeremy Chase
AU - Clemens, E. Bridie
AU - Nguyen, Thi H.O.
AU - Kedzierska, Katherine
AU - La Gruta, Nicole L.
AU - Bradley, Philip
AU - Thomas, Paul G.
N1 - Funding Information: The work was supported by NIH grant AI107625 and ALSAC (to P.G.T.), FHCRC internal development funding to P.B., and an NHMRC Program Grant (1071916) to K.K. and N.L.L. N.L.L. is the recipient of a Sylvia and Charles Viertel Senior Medical Research Fellowship. E.B.C. is an NHMRC Peter Doherty Fellow and K.K. is an NHMRC SRF Level B Fellow. G.C.W. was the recipient of National Institute on Aging (NIA) K23 AG033113, NIA P30 AG021334, John A. Hartford Foundation's Center of Excellence in Geriatric Medicine Scholars Award, and Johns Hopkins Biology of Healthy Aging Program.
PY - 2017/7/6
Y1 - 2017/7/6
N2 - T cells are defined by a heterodimeric surface receptor, the T cell receptor (TCR), that mediates recognition of pathogen-associated epitopes through interactions with peptide and major histocompatibility complexes (pMHCs). TCRs are generated by genomic rearrangement of the germline TCR locus, a process termed V(D)J recombination, that has the potential to generate marked diversity of TCRs (estimated to range from 10 15 (ref. 1) to as high as 10 61 (ref. 2) possible receptors). Despite this potential diversity, TCRs from T cells that recognize the same pMHC epitope often share conserved sequence features, suggesting that it may be possible to predictively model epitope specificity. Here we report the in-depth characterization of ten epitope-specific TCR repertoires of CD8 + T cells from mice and humans, representing over 4,600 in-frame single-cell-derived TCRαβ sequence pairs from 110 subjects. We developed analytical tools to characterize these epitope-specific repertoires: a distance measure on the space of TCRs that permits clustering and visualization, a robust repertoire diversity metric that accommodates the low number of paired public receptors observed when compared to single-chain analyses, and a distance-based classifier that can assign previously unobserved TCRs to characterized repertoires with robust sensitivity and specificity. Our analyses demonstrate that each epitope-specific repertoire contains a clustered group of receptors that share core sequence similarities, together with a dispersed set of diverse 'outlier' sequences. By identifying shared motifs in core sequences, we were able to highlight key conserved residues driving essential elements of TCR recognition. These analyses provide insights into the generalizable, underlying features of epitope-specific repertoires and adaptive immune recognition.
AB - T cells are defined by a heterodimeric surface receptor, the T cell receptor (TCR), that mediates recognition of pathogen-associated epitopes through interactions with peptide and major histocompatibility complexes (pMHCs). TCRs are generated by genomic rearrangement of the germline TCR locus, a process termed V(D)J recombination, that has the potential to generate marked diversity of TCRs (estimated to range from 10 15 (ref. 1) to as high as 10 61 (ref. 2) possible receptors). Despite this potential diversity, TCRs from T cells that recognize the same pMHC epitope often share conserved sequence features, suggesting that it may be possible to predictively model epitope specificity. Here we report the in-depth characterization of ten epitope-specific TCR repertoires of CD8 + T cells from mice and humans, representing over 4,600 in-frame single-cell-derived TCRαβ sequence pairs from 110 subjects. We developed analytical tools to characterize these epitope-specific repertoires: a distance measure on the space of TCRs that permits clustering and visualization, a robust repertoire diversity metric that accommodates the low number of paired public receptors observed when compared to single-chain analyses, and a distance-based classifier that can assign previously unobserved TCRs to characterized repertoires with robust sensitivity and specificity. Our analyses demonstrate that each epitope-specific repertoire contains a clustered group of receptors that share core sequence similarities, together with a dispersed set of diverse 'outlier' sequences. By identifying shared motifs in core sequences, we were able to highlight key conserved residues driving essential elements of TCR recognition. These analyses provide insights into the generalizable, underlying features of epitope-specific repertoires and adaptive immune recognition.
UR - http://www.scopus.com/inward/record.url?scp=85022212188&partnerID=8YFLogxK
U2 - https://doi.org/10.1038/nature22383
DO - https://doi.org/10.1038/nature22383
M3 - Article
C2 - 28636592
SN - 0028-0836
VL - 547
SP - 89
EP - 93
JO - Nature
JF - Nature
IS - 7661
ER -