Abstract
(Figure Presented) We present a quality-driven, Poisson-guided autonomous scanning method. Unlike previous scan planning techniques, we do not aim to minimize the number of scans needed to cover the object's surface, but rather to ensure the high quality scanning of the model. This goal is achieved by placing the scanner at strategically selected Next-Best-Views (NBVs) to ensure progressively capturing the geometric details of the object, until both completeness and high fidelity are reached. The technique is based on the analysis of a Poisson field and its geometric relation with an input scan. We generate a confidence map that reflects the quality/fidelity of the estimated Poisson iso-surface. The confidence map guides the generation of a viewing vector field, which is then used for computing a set of NBVs. We applied the algorithm on two different robotic platforms, a PR2 mobile robot and a one-arm industry robot. We demonstrated the advantages of our method through a number of autonomous high quality scannings of complex physical objects, as well as performance comparisons against state-of-the-art methods.
Original language | English |
---|---|
Journal | ACM Transactions on Graphics |
Volume | 33 |
Issue number | 6 |
DOIs | |
State | Published - 19 Nov 2014 |
Keywords
- 3D acquisition
- Autonomous scanning
- Next-best-view
All Science Journal Classification (ASJC) codes
- Computer Graphics and Computer-Aided Design