Quadratic Multiparty Randomized Encodings Beyond Honest Majority and Their Applications

Benny Applebaum, Yuval Ishai, Or Karni, Arpita Patra

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Multiparty randomized encodings (Applebaum, Brakerski, and Tsabary, SICOMP 2021) reduce the task of securely computing a complicated multiparty functionality f to the task of securely computing a simpler functionality g. The reduction is non-interactive and preserves information-theoretic security against a passive (semi-honest) adversary, also referred to as privacy. The special case of a degree-2 encoding g (2MPRE) has recently found several applications to secure multiparty computation (MPC) with either information-theoretic security or making black-box access to cryptographic primitives. Unfortunately, as all known constructions are based on information-theoretic MPC protocols in the plain model, they can only be private with an honest majority. In this paper, we break the honest-majority barrier and present the first construction of general 2MPRE that remains secure in the presence of a dishonest majority. Our construction encodes every n-party functionality f by a 2MPRE that tolerates at most t= ⌊ 2 n/ 3 ⌋ passive corruptions. We derive several applications including: (1) The first non-interactive client-server MPC protocol with perfect privacy against any coalition of a minority of the servers and up to t of the n clients; (2) Completeness of 3-party functionalities under non-interactive t-private reductions; and (3) A single-round t-private reduction from general-MPC to an ideal oblivious transfer (OT). These positive results partially resolve open questions that were posed in several previous works. We also show that t-private 2MPREs are necessary for solving (2) and (3), thus establishing new equivalence theorems between these three notions. Finally, we present a new approach for constructing fully-private 2MPREs based on multi-round protocols in the OT-hybrid model that achieve perfect privacy against active attacks. Moreover, by slightly restricting the power of the active adversary, we derive an equivalence between these notions. This forms a surprising, and quite unique, connection between a non-interactive passively-private primitive to an interactive actively-private primitive.

Original languageEnglish
Title of host publicationAdvances in Cryptology – CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Proceedings
EditorsYevgeniy Dodis, Thomas Shrimpton
PublisherSpringer Science and Business Media Deutschland GmbH
Pages453-482
Number of pages30
ISBN (Print)9783031159848
DOIs
StatePublished - 2022
Event42nd Annual International Cryptology Conference, CRYPTO 2022 - Santa Barbara, United States
Duration: 15 Aug 202218 Aug 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13510 LNCS

Conference

Conference42nd Annual International Cryptology Conference, CRYPTO 2022
Country/TerritoryUnited States
CitySanta Barbara
Period15/08/2218/08/22

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Quadratic Multiparty Randomized Encodings Beyond Honest Majority and Their Applications'. Together they form a unique fingerprint.

Cite this