Pure and Hybrid SCAN, rSCAN, and r2SCAN: Which One Is Preferred in KS- and HF-DFT Calculations, and How Does D4 Dispersion Correction Affect This Ranking?

Golokesh Santra, Jan M. L Martin

Research output: Contribution to journalArticlepeer-review

Abstract

Using the large and chemically diverse GMTKN55 dataset, we have tested the performance of pure and hybrid KS-DFT and HF-DFT functionals constructed from three variants of the SCAN meta-GGA exchange-correlation functional: original SCAN, rSCAN, and r2SCAN. Without any dispersion correction involved, HF-SCANn outperforms the two other HF-DFT functionals. In contrast, among the self-consistent variants, SCANn and r2SCANn offer essentially the same performance at lower percentages of HF-exchange, while at higher percentages, SCANn marginally outperforms r2SCANn and rSCANn. However, with D4 dispersion correction included, all three HF-DFT-D4 variants perform similarly, and among the self-consistent counterparts, r2SCANn-D4 outperforms the other two variants across the board. In view of the much milder grid dependence of r2SCAN vs. SCAN, r2SCAN is to be preferred across the board, also in HF-DFT and hybrid KS-DFT contexts.
Original languageEnglish
Article number141
Pages (from-to)141-
Number of pages11
JournalMolecules (Basel, Switzerland)
Volume27
Issue number1
DOIs
StatePublished - 27 Dec 2021

Fingerprint

Dive into the research topics of 'Pure and Hybrid SCAN, rSCAN, and r2SCAN: Which One Is Preferred in KS- and HF-DFT Calculations, and How Does D4 Dispersion Correction Affect This Ranking?'. Together they form a unique fingerprint.

Cite this