TY - JOUR
T1 - Projected WIMP sensitivity of the XENONnT dark matter experiment
AU - Aprile, E.
AU - Budnik, R.
AU - Koltman, G.
AU - Landsman, H.
AU - Levinson, L.
AU - Manfredini, A.
AU - Qiu, H.
AU - Weiss, M.
N1 - We gratefully acknowledge support from the National Science Foundation, Swiss National Science Foundation, German Ministry for Education and Research, Max Planck Gesellschaft, Deutsche Forschungsgemeinschaft, Netherlands Organisation for Scientific Research (NWO), Weizmann Institute of Science, ISF, Fundacao para a Ciencia e a Tecnologia, R?gion des Pays de la Loire, Knut and AliceWallenberg Foundation, Kavli Foundation, JSPS Kakenhi in Japan and Istituto Nazionale di Fisica Nucleare. This project has received funding or support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreements No. 690575 and No. 674896, respectively. Data processing is performed using infrastructures from the Open Science Grid, the European Grid Initiative and the Dutch national e-infrastructure with the support of SURF Cooperative. We are grateful to Laboratori Nazionali del Gran Sasso for hosting and supporting the XENON project.
PY - 2020/11
Y1 - 2020/11
N2 - XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10-3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10-48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10-48 cm2 (5.0×10-48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10-43 cm2 (6.0×10-42 cm2).
AB - XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10-3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10-48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10-48 cm2 (5.0×10-48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10-43 cm2 (6.0×10-42 cm2).
UR - http://www.scopus.com/inward/record.url?scp=85096498168&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2020/11/031
DO - 10.1088/1475-7516/2020/11/031
M3 - مقالة
SN - 1475-7516
VL - 2020
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 11
M1 - 031
ER -