Probing fast oscillating scalar dark matter with atoms and molecules

Dionysios Antypas, Oleg Tretiak, Ke Zhang, Antoine Garcon, Gilad Perez, Mikhail G. Kozlov, Stephan Schiller, Dmitry Budker

Research output: Contribution to journalArticlepeer-review

Abstract

Light scalar dark matter (DM) with scalar couplings to matter is expected within several scenarios to induce variations in the fundamental constants of nature. Such variations can be searched for, among other ways, via atomic spectroscopy. Sensitive atomic observables arise primarily due to possible changes in the fine-structure constant or the electron mass. Most of the searches to date have focused on slow variations of the constants (i.e. modulation frequencies <1 Hz). In a recent experiment (2019 Phys. Rev. Lett. 123 141102) called weekend relaxion-search laboratory (WReSL), we reported on a direct search for rapid variations in the radio-frequency band. Such a search is particularly motivated within a class of relaxion DM models. We discuss the WReSL experiment, report on progress toward improved measurements of rapid fundamental constant variations, and discuss the planned extension of the work to molecules, in which rapid variations of the nuclear mass can be sensitively searched for.

Original languageEnglish
Article number034001
JournalQuantum Science and Technology
Volume6
Issue number3
DOIs
StatePublished - 1 Apr 2021

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • Materials Science (miscellaneous)
  • Physics and Astronomy (miscellaneous)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Probing fast oscillating scalar dark matter with atoms and molecules'. Together they form a unique fingerprint.

Cite this