TY - GEN
T1 - Predicting human strategic decisions using facial expressions
AU - Peled, Noam
AU - Bitan, Moshe
AU - Keshet, Joseph
AU - Kraus, Sarit
N1 - Place of conference:China
PY - 2013
Y1 - 2013
N2 - People's facial expressions, whether made consciously or subconsciously, continuously reveal their state of mind. This work proposes a method for predicting people's strategic decisions based on their facial expressions. We designed a new version of the centipede game that intorduces an incentive for the human participant to hide her facial expressions. We recorded on video participants who played several games of our centipede version, and concurrently logged their decisions throughout the games. The video snippet of the participants' faces prior to their decisions is represented as a fixed-size vector by estimating the covariance matrix of key facial points which change over time. This vector serves as input to a classifier that is trained to predict the participant's decision. We compare several training techniques, all of which are designed to work with the imbalanced decisions typically made by the players of the game. Furthermore, we investigate adaptation of the trained model to each player individually, while taking into account the player's facial expressions in the previous games. The results show that our method outperforms standard SVM as well as humans in predicting subjects' strategic decisions. To the best of our knowledge, this is the first study to present a methodology for predicting people's strategic decisions when there is an incentive to hide facial expressions.
AB - People's facial expressions, whether made consciously or subconsciously, continuously reveal their state of mind. This work proposes a method for predicting people's strategic decisions based on their facial expressions. We designed a new version of the centipede game that intorduces an incentive for the human participant to hide her facial expressions. We recorded on video participants who played several games of our centipede version, and concurrently logged their decisions throughout the games. The video snippet of the participants' faces prior to their decisions is represented as a fixed-size vector by estimating the covariance matrix of key facial points which change over time. This vector serves as input to a classifier that is trained to predict the participant's decision. We compare several training techniques, all of which are designed to work with the imbalanced decisions typically made by the players of the game. Furthermore, we investigate adaptation of the trained model to each player individually, while taking into account the player's facial expressions in the previous games. The results show that our method outperforms standard SVM as well as humans in predicting subjects' strategic decisions. To the best of our knowledge, this is the first study to present a methodology for predicting people's strategic decisions when there is an incentive to hide facial expressions.
UR - http://www.scopus.com/inward/record.url?scp=84896061195&partnerID=8YFLogxK
M3 - منشور من مؤتمر
SN - 9781577356332
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2035
EP - 2041
BT - IJCAI 2013 - Proceedings of the 23rd International Joint Conference on Artificial Intelligence
T2 - 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Y2 - 3 August 2013 through 9 August 2013
ER -