@inproceedings{1a7d99c4e8984bdc89cf9732be5c54da,
title = "Polynomial Neural Fields for Subband Decomposition and Manipulation",
abstract = "Neural fields have emerged as a new paradigm for representing signals, thanks to their ability to do it compactly while being easy to optimize. In most applications, however, neural fields are treated like black boxes, which precludes many signal manipulation tasks. In this paper, we propose a new class of neural fields called polynomial neural fields (PNFs). The key advantage of a PNF is that it can represent a signal as a composition of a number of manipulable and interpretable components without losing the merits of neural fields representation. We develop a general theoretical framework to analyze and design PNFs. We use this framework to design Fourier PNFs, which match state-of-the-art performance in signal representation tasks that use neural fields. In addition, we empirically demonstrate that Fourier PNFs enable signal manipulation applications such as texture transfer and scale-space interpolation. Code is available at https://github.com/stevenygd/PNF.",
author = "Guandao Yang and Sagie Benaim and Varun Jampani and Kyle Genova and Barron, {Jonathan T.} and Thomas Funkhouser and Bharath Hariharan and Serge Belongie",
note = "Publisher Copyright: {\textcopyright} 2022 Neural information processing systems foundation. All rights reserved.; 36th Conference on Neural Information Processing Systems, NeurIPS 2022 ; Conference date: 28-11-2022 Through 09-12-2022",
year = "2022",
language = "الإنجليزيّة",
series = "Advances in Neural Information Processing Systems",
editor = "S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh",
booktitle = "Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022",
}