@inproceedings{42ea924ab0e9437ea63d74fb869fbf20,
title = "Polarized Optical-Flow Gyroscope",
abstract = "We merge by generalization two principles of passive optical sensing of motion. One is common spatially resolved imaging, where motion induces temporal readout changes at high-contrast spatial features, as used in traditional optical-flow. The other is the polarization compass, where axial rotation induces temporal readout changes due to the change of incoming polarization angle, relative to the camera frame. The latter has traditionally been modeled for uniform objects. This merger generalizes the brightness constancy assumption and optical-flow, to handle polarization. It also generalizes the polarization compass concept to handle arbitrarily textured objects. This way, scene regions having partial polarization contribute to motion estimation, irrespective of their texture and non-uniformity. As an application, we derive and demonstrate passive sensing of differential ego-rotation around the camera optical axis.",
keywords = "Bio-inspired, Low level vision, Self-calibration",
author = "Masada Tzabari and Schechner, {Yoav Y.}",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG.; 16th European Conference on Computer Vision, ECCV 2020 ; Conference date: 23-08-2020 Through 28-08-2020",
year = "2020",
doi = "10.1007/978-3-030-58517-4_22",
language = "الإنجليزيّة",
isbn = "9783030585167",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "363--381",
editor = "Andrea Vedaldi and Horst Bischof and Thomas Brox and Jan-Michael Frahm",
booktitle = "Computer Vision – ECCV 2020 - 16th European Conference, Proceedings",
address = "ألمانيا",
}