Polarity-guided uneven mitotic divisions control brassinosteroid activity in proliferating plant root cells

Nemanja Vukašinović, Che Wei Hsu, Marco Marconi, Shaopeng Li, Christopher Zachary, Rachel Shahan, Pablo Szekley, Ziv Aardening, Isabelle Vanhoutte, Qian Ma, Lucrezia Pinto, Pavel Krupař, Nathan German, Jingyuan Zhang, Claire Simon--Vezo, Jessica Perez-Sancho, Pepe Cana Quijada, Qianzi Zhou, Laura R. Lee, Jianghua CaiEmmanuelle M. Bayer, Matyáš Fendrych, Elisabeth Truernit, Yu Zhou, Sigal Savaldi-Goldstein, Krzysztof Wabnik, Trevor M. Nolan, Eugenia Russinova

Research output: Contribution to journalArticlepeer-review

Abstract

Brassinosteroid hormones are positive regulators of plant organ growth, yet their function in proliferating tissues remains unclear. Here, through integrating single-cell RNA sequencing with long-term live-cell imaging of the Arabidopsis root, we reveal that brassinosteroid activity fluctuates throughout the cell cycle, decreasing during mitotic divisions and increasing during the G1 phase. The post-mitotic recovery of brassinosteroid activity is driven by the intrinsic polarity of the mother cell, resulting in one daughter cell with enhanced brassinosteroid signaling, while the other supports brassinosteroid biosynthesis. The coexistence of these distinct daughter cell states during the G1 phase circumvents a negative feedback loop to facilitate brassinosteroid production while signaling increases. Our findings uncover polarity-guided, uneven mitotic divisions in the meristem, which control brassinosteroid hormone activity to ensure optimal root growth.

Original languageEnglish
Pages (from-to)2063-2080.e24
JournalCell
Volume188
Issue number8
DOIs
StatePublished - 17 Apr 2025

Keywords

  • brassinosteroids
  • cell cycle
  • cell division
  • cell polarity
  • live-cell imaging
  • root meristem
  • single-cell RNA sequencing

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Polarity-guided uneven mitotic divisions control brassinosteroid activity in proliferating plant root cells'. Together they form a unique fingerprint.

Cite this