Point-Cloud Completion with Pretrained Text-to-image Diffusion Models

Yoni Kasten, Ohad Rahamim, Gal Chechik

Research output: Contribution to journalConference articlepeer-review

Abstract

Point-cloud data collected in real-world applications are often incomplete, because objects are being observed from specific viewpoints, which only capture one perspective. Data can also be incomplete due to occlusion and low-resolution sampling. Existing approaches to completion rely on training models with datasets of predefined objects to guide the completion of point clouds. Unfortunately, these approaches fail to generalize when tested on objects or real-world setups that are poorly represented in their training set. Here, we leverage recent advances in text-guided 3D shape generation, showing how to use image priors for generating 3D objects. We describe an approach called SDS-Complete that uses a pre-trained text-to-image diffusion model and leverages the text semantics of a given incomplete point cloud of an object, to obtain a complete surface representation. SDS-Complete can complete a variety of objects using test-time optimization without expensive collection of 3D data. We evaluate SDS-Complete on a collection of incomplete scanned objects, captured by real-world depth sensors and LiDAR scanners. We find that it effectively reconstructs objects that are absent from common datasets, reducing Chamfer loss by about 50% on average compared with current methods. Project page: https://sds-complete.github.io/.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: 10 Dec 202316 Dec 2023

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Point-Cloud Completion with Pretrained Text-to-image Diffusion Models'. Together they form a unique fingerprint.

Cite this