Abstract
Selective photoinduced modulation of DNA may provide a powerful therapeutic tool allowing spatial and temporal control of the photochemical reaction. We have explored the photoreactivity of peptide nucleic acid (PNA) conjugates that were conjugated to a highly potent photosensitizer, Rose Bengal (RB). In addition, a short PEGylated peptide (K-PEG8-K) was conjugated to the C-terminus of the PNA to improve its water solubility. A short irradiation (visible light) of PNA conjugates with a synthetic DNA resulted in highly efficient photomodulation of the DNA as evidenced by polyacrylamide gel electrophoresis (PAGE). In addition, a PNA-RB conjugate replacing K-PEG8-K with four l-glutamic acids (E4) was found to be photoinactive. Irradiation of active PNA-RB conjugates with synthetic DNA in D20 augments the photoactivity; supporting the involvement of singlet oxygen. PAGE, HPLC, and MALDI-TOF analyses indicate that PNA-DNA photo-cross-linking is a significant pathway in the observed photoreactivity. Selective photo-cross-linking of such PNA-RB conjugates may be a novel approach to selective photodynamic therapy (sPDT) as such molecules would be sequence-specific, cell-permeable, and photoactivated in the visible region.
Original language | English |
---|---|
Pages (from-to) | 1916-1922 |
Number of pages | 7 |
Journal | Bioconjugate Chemistry |
Volume | 26 |
Issue number | 9 |
DOIs | |
State | Published - 16 Sep 2015 |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Bioengineering
- Biomedical Engineering
- Pharmacology
- Pharmaceutical Science
- Organic Chemistry