Plurality in Spatial Voting Games with Constant β

Research output: Contribution to journalArticlepeer-review


Consider a set V of voters, represented by a multiset in a metric space (X, d). The voters have to reach a decision—a point in X. A choice p∈ X is called a β -plurality point for V, if for any other choice q∈ X it holds that |{v∈V∣β·d(p,v)≤d(q,v)}|≥|V|2 . In other words, at least half of the voters “prefer” p over q, when an extra factor of β is taken in favor of p. For β= 1 , this is equivalent to Condorcet winner, which rarely exists. The concept of β -plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [TALG 2021] as a relaxation of the Condorcet criterion. Let β(X,d)∗=sup{β∣everyfinitemultisetVinXadmitsaβ-pluralitypoint} . The parameter β determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane β(R2,‖·‖2)∗=32 , and more generally, for d-dimensional Euclidean space, 1d≤β(Rd,‖·‖2)∗≤32 . In this paper, we show that 0.557≤β(Rd,‖·‖2)∗ for any dimension d (notice that 1d<0.557 for any d≥ 4). In addition, we prove that for every metric space (X, d) it holds that 2-1≤β(X,d)∗ , and show that there exists a metric space for which β(X,d)∗≤12 .

Original languageEnglish
JournalDiscrete and Computational Geometry
StateAccepted/In press - 2024


  • Condorcet criterion
  • Plurality points
  • Social choice

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics


Dive into the research topics of 'Plurality in Spatial Voting Games with Constant β'. Together they form a unique fingerprint.

Cite this