Abstract
Thin transition metal dichalcogenides sustain superconductivity at large in-plane magnetic fields due to Ising spin-orbit protection, which locks their spins in an out-of-plane orientation. Here we use thin NbSe2 as superconducting electrodes laterally coupled to graphene, making a planar, all van der Waals two-dimensional Josephson junction (2DJJ). We map out the behavior of these novel devices with respect to temperature, gate voltage, and both out-of-plane and in-plane magnetic fields. Notably, the 2DJJs sustain supercurrent up to parallel fields as high as 8.5 T, where the Zeeman energy EZ rivals the Thouless energy ETh, a regime hitherto inaccessible in graphene. As the parallel magnetic field H increases, the 2DJJ's critical current is suppressed and in a few cases undergoes suppression and recovery. We explore the behavior in H by considering theoretically two effects: a 0-π transition induced by tuning of the Zeeman energy and the unique effect of ripples in an atomically thin layer which create a small spatially varying perpendicular component of the field. The 2DJJs have potential utility as flexible probes for two-dimensional superconductivity in a variety of materials and introduce high H as a newly accessible experimental knob.
Original language | English |
---|---|
Article number | 115401 |
Journal | Physical Review B |
Volume | 103 |
Issue number | 11 |
DOIs | |
State | Published - 2 Mar 2021 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics