Photon-statistics force in ultrafast electron dynamics

Matan Even Tzur, Michael Birk, Alexey Gorlach, Michael Krüger, Ido Kaminer, Oren Cohen

Research output: Contribution to journalArticlepeer-review

Abstract

In strong-field physics and attosecond science, intense light induces ultrafast electron dynamics. Such ultrafast dynamics of electrons in matter is at the core of phenomena such as high-harmonic generation, where these dynamics lead to the emission of extreme-ultraviolet bursts with attosecond duration. So far, all ultrafast dynamics of matter were understood to purely originate from the classical vector potential of the driving light, disregarding the influence of the quantum nature of light. Here we show theoretically that the dynamics of matter driven by bright (intense) light significantly depend on the quantum state of the driving light through its quantum noise, which induces an effective photon-statistics force. To provide a unified framework for the analysis and control over such a force, we extend the strong-field approximation theory to account for non-classical driving light. Our quantum strong-field approximation theory shows that in high-harmonic generation, experimentally feasible squeezing of the driving light can shift and shape electronic trajectories and attosecond pulses at the scale of hundreds of attoseconds. Our work presents a new degree of freedom for attosecond spectroscopy, by relying on non-classical electromagnetic fields, and more generally, introduces a direct connection between attosecond science and quantum optics.

Original languageEnglish
Pages (from-to)501-509
Number of pages9
JournalNature Photonics
Volume17
Issue number6
DOIs
StatePublished - Jun 2023

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Photon-statistics force in ultrafast electron dynamics'. Together they form a unique fingerprint.

Cite this