Abstract
The slippery potential energy surface of aryl nitrenes has revealed unexpected and fascinating reactions. To explore such a challenging surface, one powerful approach is to use a combination of a cryogenic matrix environment and a tunable narrowband radiation source. In this way, we discovered the heavy-atom tunneling reaction involving spontaneous ring expansion of a fused-ring benzazirine into a seven-membered ring cyclic ketenimine. The benzazirine was generated in situ by the photochemistry of protium and deuterated triplet 2-formylphenylnitrene isolated in an argon matrix. The ring-expansion reaction takes place at 10 K with a rate constant of ∼7.4 × 10-7 s-1, despite an estimated activation barrier of 7.5 kcal mol-1. Moreover, it shows only a marginal increase in the rate upon increase of the absolute temperature by a factor of 2. Computed rate constants with and without tunneling confirm that the reaction can only occur by a tunneling process from the ground state at cryogenic conditions. It was also found that the ring-expansion reaction rate is more than 1 order of magnitude faster when the sample is exposed to broadband IR radiation.
Original language | American English |
---|---|
Pages (from-to) | 17649-17659 |
Number of pages | 11 |
Journal | Journal of the American Chemical Society |
Volume | 139 |
Issue number | 48 |
DOIs | |
State | Published - 6 Dec 2017 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Biochemistry
- Catalysis
- Colloid and Surface Chemistry