Abstract
We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z ∼ 1.2 and 2.2, with log(M * (M⊙)) ≥ 10.4 and log(SFR(M ⊙/yr)) ≥ 1.5. Including a correction for the incomplete coverage of the M* -SFR plane, and adopting a "Galactic" value for the CO-H2 conversion factor, we infer average gas fractions of ∼0.33 at z ∼ 1.2 and ∼0.47 at z ∼ 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z ∼ 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a ∼0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z ∼ 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M *, gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z ∼ 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.
Original language | English |
---|---|
Article number | 74 |
Journal | Astrophysical Journal |
Volume | 768 |
Issue number | 1 |
DOIs | |
State | Published - 1 May 2013 |
Keywords
- ISM: molecules
- galaxies: ISM
- galaxies: evolution
- galaxies: high-redshift
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science