Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy

Mohamed Mahameed, Shatha Boukeileh, Akram Obiedat, Odai Darawshi, Priya Dipta, Amit Rimon, Gordon McLennan, Rosi Fassler, Dana Reichmann, Rotem Karni, Christian Preisinger, Thomas Wilhelm, Michael Huber, Boaz Tirosh

Research output: Contribution to journalArticlepeer-review

Abstract

The integrated stress response (ISR) converges on eIF2α phosphorylation to regulate protein synthesis. ISR is activated by several stress conditions, including endoplasmic reticulum (ER) stress, executed by protein kinase R-like endoplasmic reticulum kinase (PERK). We report that ER stress combined with ISR inhibition causes an impaired maturation of several tyrosine kinase receptors (RTKs), consistent with a partial block of their trafficking from the ER to the Golgi. Other proteins mature or are secreted normally, indicating selective retention in the ER (sERr). sERr is relieved upon protein synthesis attenuation and is accompanied by the generation of large mixed disulfide bonded complexes, including ERp44. sERr was pharmacologically recapitulated by combining the HIV-protease inhibitor nelfinavir with ISRIB, an experimental drug that inhibits ISR. Nelfinavir/ISRIB combination is highly effective to inhibit the growth of RTK-addicted cell lines and hepatocellular (HCC) cells in vitro and in vivo. Thus, pharmacological sERr can be utilized as a modality for cancer treatment.

Original languageEnglish
Article number1304
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 1 Dec 2020

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Cite this