@inproceedings{1e8525cc935045ef90ca40685b8189ce,
title = "PCMC-T1: Free-Breathing Myocardial T1 Mapping with Physically-Constrained Motion Correction",
abstract = "T1 mapping is a quantitative magnetic resonance imaging (qMRI) technique that has emerged as a valuable tool in the diagnosis of diffuse myocardial diseases. However, prevailing approaches have relied heavily on breath-hold sequences to eliminate respiratory motion artifacts. This limitation hinders accessibility and effectiveness for patients who cannot tolerate breath-holding. Image registration can be used to enable free-breathing T1 mapping. Yet, inherent intensity differences between the different time points make the registration task challenging. We introduce PCMC-T1, a physically-constrained deep-learning model for motion correction in free-breathing T1 mapping. We incorporate the signal decay model into the network architecture to encourage physically-plausible deformations along the longitudinal relaxation axis. We compared PCMC-T1 to baseline deep-learning-based image registration approaches using a 5-fold experimental setup on a publicly available dataset of 210 patients. PCMC-T1 demonstrated superior model fitting quality (R2 : 0.955) and achieved the highest clinical impact (clinical score: 3.93) compared to baseline methods (0.941, 0.946 and 3.34, 3.62 respectively). Anatomical alignment results were comparable (Dice score: 0.9835 vs. 0.984, 0.988). Our code and trained models are available at https://github.com/eyalhana/PCMC-T1.",
keywords = "Diffuse myocardial diseases, Motion correction, Quantitative T mapping",
author = "Eyal Hanania and Ilya Volovik and Lilach Barkat and Israel Cohen and Moti Freiman",
note = "Publisher Copyright: {\textcopyright} The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.; 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 ; Conference date: 08-10-2023 Through 12-10-2023",
year = "2023",
doi = "10.1007/978-3-031-43990-2_22",
language = "الإنجليزيّة",
isbn = "9783031439896",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "226--235",
editor = "Hayit Greenspan and Anant Madabhushi and Parvin Mousavi and Septimiu Salcudean and James Duncan and Tanveer Syeda-Mahmood and Russell Taylor",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings",
address = "ألمانيا",
}