Abstract
Dipolar excitons are long-lived quasi-particle excitations in semiconductor heterostructure that carry an electric dipole. Cold dipolar excitons are expected to have new quantum and classical multi-particle correlation regimes, as well as several collective phases, resulting from the intricate interplay between the many-body interactions and their quantum nature. Here we show experimental evidence of a few correlation regimes of a cold dipolar exciton fluid, created optically in a semiconductor bilayer heterostructure. In the higher temperature regime, the average interaction energy between the particles shows a surprising temperature dependence, which is evidence for correlations beyond the mean field model. At a lower temperature, there is a sharp increase in the interaction energy of optically active excitons, accompanied by a strong reduction in their apparent population. This is evidence for a sharp macroscopic transition to a dark state, as has been suggested theoretically.
Original language | English |
---|---|
Article number | 2335 |
Journal | Nature Communications |
Volume | 4 |
DOIs | |
State | Published - 2013 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy