TY - JOUR
T1 - PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens
AU - Trushina, Naomi
AU - Levin, Michal
AU - Mukherjee, Prasun K.
AU - Horwitz, Benjamin
N1 - Funding Information: We are grateful to Laura D. Cohen for editing the manuscript. The microarray platform at the Department of Biology, Technion was established by Dr. Itai Yanai, to whom we are grateful for his advice, support and development of data analysis tools. We thank Dr. Michael Shmoish (Bioinformatics Knowledge Unit, Technion) for assistance with data analysis, and Samer Shalaby from the Horwitz lab for comments on the manuscript. Supported in part by a binational grant to B.A.H. and P.K.M. from the Ministries of Science of Israel and India. Design and production of T. virens oligonucleotide microarrays was funded by TIE-BARD (US-Israel Agricultural Research and Development Fund, and Texas Department of Agriculture, to B.A.H. and Dr. Charles M. Kenerley). We are grateful to the Joint Genome Institute (U.S. Department of Energy) for sequencing the T. virens genome and developing the tools for analysis of fungal genomes. N.T. was supported by a pre-doctoral fellowship from the Technion Graduate School.
PY - 2013/2/28
Y1 - 2013/2/28
N2 - Background: In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. Results: We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. Conclusions: PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.
AB - Background: In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. Results: We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. Conclusions: PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.
UR - http://www.scopus.com/inward/record.url?scp=84874347145&partnerID=8YFLogxK
U2 - https://doi.org/10.1186/1471-2164-14-138
DO - https://doi.org/10.1186/1471-2164-14-138
M3 - مقالة
SN - 1471-2164
VL - 14
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 138
ER -