TY - JOUR
T1 - p21 facilitates chronic lung inflammation via epithelial and endothelial cells
AU - Levi, Naama
AU - Papismadov, Nurit
AU - Majewska, Julia
AU - Roitman, Lior
AU - Wigoda, Noa
AU - Eilam, Raya
AU - Tsoory, Michael
AU - Rotkopf, Ron
AU - Ovadya, Yossi
AU - Akiva, Hagay
AU - Regev, Ofer
AU - Krizhanovsky, Valery
N1 - Publisher Copyright: © 2023 Levi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Cellular senescence is a stable state of cell cycle arrest that regulates tissue integrity and protects the organism from tumorigenesis. However, the accumulation of senescent cells during aging contributes to age-related pathologies. One such pathology is chronic lung inflammation. p21 (CDKN1A) regulates cellular senescence via inhibition of cyclin-dependent kinases (CDKs). However, its role in chronic lung inflammation and functional impact on chronic lung disease, where senescent cells accumulate, is less understood. To elucidate the role of p21 in chronic lung inflammation, we subjected p21 knockout (p21-/-) mice to repetitive inhalations of lipopolysaccharide (LPS), an exposure that leads to chronic bronchitis and accumulation of senescent cells. p21 knockout led to a reduced presence of senescent cells, alleviated the pathological manifestations of chronic lung inflammation, and improved the fitness of the mice. The expression profiling of the lung cells revealed that resident epithelial and endothelial cells, but not immune cells, play a significant role in mediating the p21-dependent inflammatory response following chronic LPS exposure. Our results implicate p21 as a critical regulator of chronic bronchitis and a driver of chronic airway inflammation and lung destruction.
AB - Cellular senescence is a stable state of cell cycle arrest that regulates tissue integrity and protects the organism from tumorigenesis. However, the accumulation of senescent cells during aging contributes to age-related pathologies. One such pathology is chronic lung inflammation. p21 (CDKN1A) regulates cellular senescence via inhibition of cyclin-dependent kinases (CDKs). However, its role in chronic lung inflammation and functional impact on chronic lung disease, where senescent cells accumulate, is less understood. To elucidate the role of p21 in chronic lung inflammation, we subjected p21 knockout (p21-/-) mice to repetitive inhalations of lipopolysaccharide (LPS), an exposure that leads to chronic bronchitis and accumulation of senescent cells. p21 knockout led to a reduced presence of senescent cells, alleviated the pathological manifestations of chronic lung inflammation, and improved the fitness of the mice. The expression profiling of the lung cells revealed that resident epithelial and endothelial cells, but not immune cells, play a significant role in mediating the p21-dependent inflammatory response following chronic LPS exposure. Our results implicate p21 as a critical regulator of chronic bronchitis and a driver of chronic airway inflammation and lung destruction.
KW - cellular senescence
KW - chronic lung inflammation
KW - p21 (CDKN1A)
UR - http://www.scopus.com/inward/record.url?scp=85153414086&partnerID=8YFLogxK
U2 - https://doi.org/10.18632/aging.204622
DO - https://doi.org/10.18632/aging.204622
M3 - Article
C2 - 36996500
SN - 1945-4589
VL - 15
SP - 2395
EP - 2417
JO - Aging
JF - Aging
IS - 7
ER -