OSA severity assessment based on sleep breathing analysis using ambient microphone

E. Dafna, A. Tarasiuk, Y. Zigel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, an audio-based system for severity estimation of obstructive sleep apnea (OSA) is proposed. The system estimates the apnea-hypopnea index (AHI), which is the average number of apneic events per hour of sleep. This system is based on a Gaussian mixture regression algorithm that was trained and validated on full-night audio recordings. Feature selection process using a genetic algorithm was applied to select the best features extracted from time and spectra domains. A total of 155 subjects, referred to in-laboratory polysomnography (PSG) study, were recruited. Using the PSG's AHI score as a gold-standard, the performances of the proposed system were evaluated using a Pearson correlation, AHI error, and diagnostic agreement methods. Correlation of R=0.89, AHI error of 7.35 events/hr, and diagnostic agreement of 77.3% were achieved, showing encouraging performances and a reliable non-contact alternative method for OSA severity estimation.

Original languageEnglish
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages2044-2047
Number of pages4
DOIs
StatePublished - 31 Oct 2013
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: 3 Jul 20137 Jul 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

Conference

Conference2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period3/07/137/07/13

Keywords

  • GMR
  • OSA
  • Signal processing
  • Snoring

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'OSA severity assessment based on sleep breathing analysis using ambient microphone'. Together they form a unique fingerprint.

Cite this