Abstract
The optoelectronic process of light absorption and current formation in photodiodes is shown to be a significant source of optoelectronic chromatic dispersion (OED). Simple design rules are developed for fabricating a photodiode-based dispersion device that possesses large, small, zero, and either positive or negative OED. The OED parameter is proportional to a spectrally-dependent absorption term α-1dα/dλ . Silicon-based devices are predicted to display significant OED throughout the near IR, while Ge and InGaAs have high OED in the C- and L-bands and 1650 nm region, respectively. The OED of a commercial Ge PN photodiode is measured to be 3460 ps/nm at 1560 nm wavelength with 500 kHz modulation, demonstrating 8 pm spectral resolution with the phase-shift technique. Temperature-tuning of the OED in the Ge photodiode is also demonstrated. The ubiquitous photodiode is a tunable OED device, with applications in high-resolution optical spectroscopy and optical sensing.
Original language | English |
---|---|
Pages (from-to) | 19839-19852 |
Number of pages | 14 |
Journal | Optics Express |
Volume | 29 |
Issue number | 13 |
DOIs | |
State | Published - 21 Jun 2021 |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics