TY - GEN
T1 - Optimizing skyscrapers' spatial integrated DSF-MTMD system under wind loads
AU - Lavan, Oren
AU - Anaby, Liran
N1 - Publisher Copyright: © 20th Congress of IABSE, New York City 2019: The Evolving Metropolis - Report. All rights reserved.
PY - 2019
Y1 - 2019
N2 - From a structural engineering point of view, wind effects pose one of the major challenges to tall buildings. From a performance/architectural point of view, climatologic aspects pose a major challenge. Remedies for each challenge separately have been proposed. One of the remedies for wind effects is the Tunes-Mass-Damper (TMD) or multiple TMD's. To mitigate climatological issues, the Double-Skin-Façade (DSF) has been developed. Recently it has been suggested to take advantage of the space between the two skins of the DSF system to allocate TMD's. In this work, another step is taken towards a single remedy for both challenges. A modified version of the TMD-DSF system proposed by Moon (2016) is presented. That is, parts of the mass of the DSF envelope itself are used as part of a multiple TMD (MTMD) system. This is obtained by connecting these parts to the building using springs and dampers while allowing the DSF to move parallel to the floor edges. Furthermore, the DSF-MTMD system is optimized using a formal optimization approach. The optimization indicates which parts of the envelope should be connected to the building rigidly and which should be used as TMD's. Furthermore, the properties of the springs and the dampers are determined by minimizing the cost associated with transforming the DSF system to a DSF-MTMD system and limiting wind responses to desired values.
AB - From a structural engineering point of view, wind effects pose one of the major challenges to tall buildings. From a performance/architectural point of view, climatologic aspects pose a major challenge. Remedies for each challenge separately have been proposed. One of the remedies for wind effects is the Tunes-Mass-Damper (TMD) or multiple TMD's. To mitigate climatological issues, the Double-Skin-Façade (DSF) has been developed. Recently it has been suggested to take advantage of the space between the two skins of the DSF system to allocate TMD's. In this work, another step is taken towards a single remedy for both challenges. A modified version of the TMD-DSF system proposed by Moon (2016) is presented. That is, parts of the mass of the DSF envelope itself are used as part of a multiple TMD (MTMD) system. This is obtained by connecting these parts to the building using springs and dampers while allowing the DSF to move parallel to the floor edges. Furthermore, the DSF-MTMD system is optimized using a formal optimization approach. The optimization indicates which parts of the envelope should be connected to the building rigidly and which should be used as TMD's. Furthermore, the properties of the springs and the dampers are determined by minimizing the cost associated with transforming the DSF system to a DSF-MTMD system and limiting wind responses to desired values.
KW - Adjoint method
KW - DSF
KW - Energy dissipation devices
KW - High-rise buildings
KW - Human comfort criteria
KW - MTMD
KW - Material interpolation functions
KW - Sensitivity Analysis
KW - Topology optimization
KW - Wind loads
UR - http://www.scopus.com/inward/record.url?scp=85074452310&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - 20th Congress of IABSE, New York City 2019: The Evolving Metropolis - Report
SP - 1192
EP - 1198
BT - 20th Congress of IABSE, New York City 2019
T2 - 20th IABSE Congress, New York City 2019: The Evolving Metropolis
Y2 - 4 September 2019 through 6 September 2019
ER -