Optimally Orienting Physical Networks

Dana Silverbush, Michael Elberfeld, Roded Sharan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In a network orientation problem one is given a mixed graph, consisting of directed and undirected edges, and a set of source-target vertex pairs. The goal is to orient the undirected edges so that a maximum number of pairs admit a directed path from the source to the target. This problem is NP-complete and no approximation algorithms are known for it. It arises in the context of analyzing physical networks of protein-protein and protein-dna interactions. While the latter are naturally directed from a transcription factor to a gene, the direction of signal flow in protein-protein interactions is often unknown or cannot be measured en masse. One then tries to infer this information by using causality data on pairs of genes such that the perturbation of one gene changes the expression level of the other gene. Here we provide a first polynomial-size ilp formulation for this problem, which can be efficiently solved on current networks. We apply our algorithm to orient protein-protein interactions in yeast and measure our performance using edges with known orientations. We find that our algorithm achieves high accuracy and coverage in the orientation, outperforming simplified algorithmic variants that do not use information on edge directions. The obtained orientations can lead to better understanding of the structure and function of the network.

Original languageEnglish
Title of host publicationResearch in Computational Molecular Biology - 15th Annual International Conference, RECOMB 2011, Proceedings
EditorsVineet Bafna, S. Cenk Sahinalp
PublisherSpringer Verlag
Pages424-436
Number of pages13
ISBN (Print)9783642200359
DOIs
StatePublished - 2011
Event15th Annual International Conference on Research in Computational Molecular Biology, RECOMB 2011 - Vancouver, BC, Canada
Duration: 28 Mar 201131 Mar 2011

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume6577 LNBI

Conference

Conference15th Annual International Conference on Research in Computational Molecular Biology, RECOMB 2011
Country/TerritoryCanada
CityVancouver, BC
Period28/03/1131/03/11

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Optimally Orienting Physical Networks'. Together they form a unique fingerprint.

Cite this