TY - JOUR
T1 - Optical Method for Detection and Classification of Heavy Metal Contaminants in Water Using Iso-pathlength Point Characterization
AU - Tzroya, Alon
AU - Duadi, Hamootal
AU - Fixler, Dror
N1 - Publisher Copyright: © 2024 The Authors. Published by American Chemical Society.
PY - 2024/2/13
Y1 - 2024/2/13
N2 - Water pollution caused by hazardous substances, particularly heavy metal (HM) ions, poses a threat to human health and the environment. Traditional methods for measuring HM in water are expensive and time-consuming and require extensive sample preparation. Therefore, developing robust, simple, and sensitive techniques for the detection and classification of HM is needed. We propose an optical approach that exploits the full scattering profile, meaning the angular intensity distribution, and utilizes the iso-pathlength (IPL) point. This point appears where the intensity is constant for different scattering coefficients, while the absorption coefficient is set. The absorption does not affect the IPL point position, it only reduces its intensity. In this paper, we explore the wavelength influence on the IPL point both in Monte Carlo simulations and experimentally. Next, we present the characterization of ferric chloride (FeCl2) by this phenomenon. Eventually, we exhibit the detection of FeCl2 and intralipid mixed in concentrations of 50-100 and 20-30 ppm, respectively. These findings endorse the idea that the IPL point is an intrinsic parameter of a system serving as an absolute calibration point. The method provides an efficient way of differentiating contamination in water. Its characterization technique is easy, precise, and versatile making it preferable for water monitoring.
AB - Water pollution caused by hazardous substances, particularly heavy metal (HM) ions, poses a threat to human health and the environment. Traditional methods for measuring HM in water are expensive and time-consuming and require extensive sample preparation. Therefore, developing robust, simple, and sensitive techniques for the detection and classification of HM is needed. We propose an optical approach that exploits the full scattering profile, meaning the angular intensity distribution, and utilizes the iso-pathlength (IPL) point. This point appears where the intensity is constant for different scattering coefficients, while the absorption coefficient is set. The absorption does not affect the IPL point position, it only reduces its intensity. In this paper, we explore the wavelength influence on the IPL point both in Monte Carlo simulations and experimentally. Next, we present the characterization of ferric chloride (FeCl2) by this phenomenon. Eventually, we exhibit the detection of FeCl2 and intralipid mixed in concentrations of 50-100 and 20-30 ppm, respectively. These findings endorse the idea that the IPL point is an intrinsic parameter of a system serving as an absolute calibration point. The method provides an efficient way of differentiating contamination in water. Its characterization technique is easy, precise, and versatile making it preferable for water monitoring.
UR - http://www.scopus.com/inward/record.url?scp=85184822284&partnerID=8YFLogxK
U2 - https://doi.org/10.1021/acsomega.3c08792
DO - https://doi.org/10.1021/acsomega.3c08792
M3 - مقالة
C2 - 38371777
SN - 2470-1343
VL - 9
SP - 6986
EP - 6993
JO - ACS Omega
JF - ACS Omega
IS - 6
ER -