Optical genome and epigenome mapping of clear cell renal cell carcinoma

Sapir Margalit, Zuzana Tulpová, Yael Michaeli, Tahir Detinis Zur, Jasline Deek, Sivan Louzoun-Zada, Gil Nifker, Assaf Grunwald, Yuval Scher, Leonie Schütz, Elmar Weinhold, Yehudit Gnatek, Dorit Omer, Benjamin Dekel, Eitan Friedman, Yuval Ebenstein

Research output: Contribution to journalArticlepeer-review

Abstract

Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently characterized by a 3p deletion and the inactivation of the von Hippel–Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehensive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.

Original languageEnglish
Article numberzcaf008
JournalNAR Cancer
Volume7
Issue number1
DOIs
StatePublished - 1 Mar 2025

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Optical genome and epigenome mapping of clear cell renal cell carcinoma'. Together they form a unique fingerprint.

Cite this