Abstract
Adaptive importance sampling for stochastic optimization is a promising approach that offers improved convergence through variance reduction. In this work, we propose a new framework for variance reduction that enables the use of mixtures over predefined sampling distributions, which can naturally encode prior knowledge about the data. While these sampling distributions are fixed, the mixture weights are adapted during the optimization process. We propose VRM, a novel and efficient adaptive scheme that asymptotically recovers the best mixture weights in hindsight and can also accommodate sampling distributions over sets of points. We empirically demonstrate the versatility of VRM in a range of applications.
| Original language | English |
|---|---|
| Pages (from-to) | 705-714 |
| Journal | Proceedings of Machine Learning Research |
| Volume | 97 |
| State | Published - 2019 |
| Externally published | Yes |
| Event | 36th International Conference on Machine Learning, ICML 2019 - Long Beach, United States Duration: 9 Jun 2019 → 15 Jun 2019 |
All Science Journal Classification (ASJC) codes
- Education
- Computer Science Applications
- Human-Computer Interaction