Online Apprenticeship Learning

Lior Shani, Tom Zahavy, Shie Mannor

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In Apprenticeship Learning (AL), we are given a Markov Decision Process (MDP) without access to the cost function. Instead, we observe trajectories sampled by an expert that acts according to some policy. The goal is to find a policy that matches the expert’s performance on some predefined set of cost functions. We introduce an online variant of AL (Online Apprenticeship Learning; OAL), where the agent is expected to perform comparably to the expert while interacting with the environment. We show that the OAL problem can be effectively solved by combining two mirror descent based no-regret algorithms: one for policy optimization and another for learning the worst case cost. By employing optimistic exploration, we derive a convergent algorithm with O(K) regret, where K is the number of interactions with the MDP, and an additional linear error term that depends on the amount of expert trajectories available. Importantly, our algorithm avoids the need to solve an MDP at each iteration, making it more practical compared to prior AL methods. Finally, we implement a deep variant of our algorithm which shares some similarities to GAIL, but where the discriminator is replaced with the costs learned by OAL. Our simulations suggest that OAL performs well in high dimensional control problems.

Original languageEnglish
Title of host publicationAAAI-22 Technical Tracks 8
Pages8240-8248
Number of pages9
ISBN (Electronic)1577358767, 9781577358763
StatePublished - 30 Jun 2022
Event36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
Duration: 22 Feb 20221 Mar 2022

Publication series

NameProceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Volume36

Conference

Conference36th AAAI Conference on Artificial Intelligence, AAAI 2022
CityVirtual, Online
Period22/02/221/03/22

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Online Apprenticeship Learning'. Together they form a unique fingerprint.

Cite this