On Unsupervised Partial Shape Correspondence

Amit Bracha, Thomas Dagès, Ron Kimmel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

While dealing with matching shapes to their parts, we often apply a tool known as functional maps. The idea is to translate the shape matching problem into “convenient” spaces by which matching is performed algebraically by solving a least squares problem. Here, we argue that such formulations, though popular in this field, introduce errors in the estimated match when partiality is invoked. Such errors are unavoidable even for advanced feature extraction networks, and they can be shown to escalate with increasing degrees of shape partiality, adversely affecting the learning capability of such systems. To circumvent these limitations, we propose a novel approach for partial shape matching. Our study of functional maps led us to a novel method that establishes direct correspondence between partial and full shapes through feature matching bypassing the need for functional map intermediate spaces. The Gromov Distance between metric spaces leads to the construction of the first part of our loss functions. For regularization we use two options: a term based on the area preserving property of the mapping, and a relaxed version that avoids the need to resort to functional maps. The proposed approach shows superior performance on the SHREC’16 dataset, outperforming existing unsupervised methods for partial shape matching. Notably, it achieves state-of-the-art results on the SHREC’16 HOLES benchmark, superior also compared to supervised methods. We demonstrate the benefits of the proposed unsupervised method when applied to a new dataset PFAUST for part-to-full shape correspondence.

Original languageEnglish
Title of host publicationComputer Vision – ACCV 2024 - 17th Asian Conference on Computer Vision, Proceedings
EditorsMinsu Cho, Ivan Laptev, Du Tran, Angela Yao, Hongbin Zha
PublisherSpringer Science and Business Media Deutschland GmbH
Pages316-332
Number of pages17
ISBN (Print)9789819609680
DOIs
StatePublished - 2025
Event17th Asian Conference on Computer Vision, ACCV 2024 - Hanoi, Viet Nam
Duration: 8 Dec 202412 Dec 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15480 LNCS

Conference

Conference17th Asian Conference on Computer Vision, ACCV 2024
Country/TerritoryViet Nam
CityHanoi
Period8/12/2412/12/24

Keywords

  • Shape correspondence
  • learning to match
  • partial shapes

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Cite this