TY - GEN
T1 - On the Transferability of Spectral Graph Filters
AU - Levie, Ron
AU - Isufi, Elvin
AU - Kutyniok, Gitta
N1 - Publisher Copyright: © 2019 IEEE.
PY - 2019/7
Y1 - 2019/7
N2 - This paper focuses on spectral filters on graphs, namely filters defined as elementwise multiplication in the frequency domain of a graph. In many graph signal processing settings, it is important to transfer a filter from one graph to another. One example is in graph convolutional neural networks (ConvNets), where the dataset consists of signals defined on many different graphs, and the learned filters should generalize to signals on new graphs, not present in the training set. A necessary condition for transferability (the ability to transfer filters) is stability. Namely, given a graph filter, if we add a small perturbation to the graph, then the filter on the perturbed graph is a small perturbation of the original filter. It is a common misconception that spectral filters are not stable, and this paper aims at debunking this mistake. We introduce a space of filters, called the Cayley smoothness space, that contains the filters of state-of-the-art spectral filtering methods, and whose filters can approximate any generic spectral filter. For filters in this space, the perturbation in the filter is bounded by a constant times the perturbation in the graph, and filters in the Cayley smoothness space are thus termed linearly stable. By combining stability with the known property of equivariance, we prove that graph spectral filters are transferable.
AB - This paper focuses on spectral filters on graphs, namely filters defined as elementwise multiplication in the frequency domain of a graph. In many graph signal processing settings, it is important to transfer a filter from one graph to another. One example is in graph convolutional neural networks (ConvNets), where the dataset consists of signals defined on many different graphs, and the learned filters should generalize to signals on new graphs, not present in the training set. A necessary condition for transferability (the ability to transfer filters) is stability. Namely, given a graph filter, if we add a small perturbation to the graph, then the filter on the perturbed graph is a small perturbation of the original filter. It is a common misconception that spectral filters are not stable, and this paper aims at debunking this mistake. We introduce a space of filters, called the Cayley smoothness space, that contains the filters of state-of-the-art spectral filtering methods, and whose filters can approximate any generic spectral filter. For filters in this space, the perturbation in the filter is bounded by a constant times the perturbation in the graph, and filters in the Cayley smoothness space are thus termed linearly stable. By combining stability with the known property of equivariance, we prove that graph spectral filters are transferable.
UR - http://www.scopus.com/inward/record.url?scp=85082852338&partnerID=8YFLogxK
U2 - https://doi.org/10.1109/SampTA45681.2019.9030932
DO - https://doi.org/10.1109/SampTA45681.2019.9030932
M3 - منشور من مؤتمر
T3 - 2019 13th International Conference on Sampling Theory and Applications, SampTA 2019
BT - 2019 13th International Conference on Sampling Theory and Applications, SampTA 2019
T2 - 13th International Conference on Sampling Theory and Applications, SampTA 2019
Y2 - 8 July 2019 through 12 July 2019
ER -