On the superiority of visual processing in spatiotopic coordinates

Alon Mann, Ilana Naveh, Ehud Zohary

Research output: Contribution to journalArticlepeer-review

Abstract

Organisms exploit spatiotemporal regularities in the environment to optimize goal attainment. For example, in experimental conditions, repetition of a stimulus at the same position speeds up response time. A recent study reported that this spatial priming occurs even when the eyes move between trials, indicating that the target is encoded in spatiotopic coordinates (Attention, Perception & Psychophysics 78, (2016) 114–132). However, in that study, the relevant position of the repeated stimulus eliciting spatiotopic priming, was always at the screen center. Using a similar paradigm, we find that reaction times for screen-centered targets are markedly shorter than for retinally-equidistant target positions. When this center preference is taken into account, the alleged spatiotopic priming effects are dramatically reduced, though not totally eliminated. In a second experiment, we show that the preferred central stimulus position is encoded in allocentric coordinates (e.g. screen position) rather than in an egocentric frame of reference (e.g. straight ahead). The better performance at the screen center, irrespective of gaze direction or seating position, is likely to reflect an optimal choice for the allocation of spatial attention.

Original languageAmerican English
Pages (from-to)15-23
Number of pages9
JournalVision Research
Volume150
DOIs
StatePublished - Sep 2018

Keywords

  • Priming
  • Retinotopic
  • Screen center
  • Spatial attention
  • Spatiotopic
  • Straight ahead

All Science Journal Classification (ASJC) codes

  • Ophthalmology
  • Sensory Systems

Fingerprint

Dive into the research topics of 'On the superiority of visual processing in spatiotopic coordinates'. Together they form a unique fingerprint.

Cite this