Abstract
Let G be an n-vertex oriented graph. Let t(G) (respectively i(G)) be the probability that a random set of 3 vertices of G spans a transitive triangle (respectively an independent set). We prove that t(G) + i(G) ≥19− on(1). Our proof uses the method of flag algebras that we supplement with several steps that make it more easily comprehensible. We also prove a stability result and an exact result. Namely, we describe an extremal construction, prove that it is essentially unique, and prove that if H is sufficiently far from that construction, then t(H) + i(H) is significantly larger than19. We go to greater technical detail than is usually done in papers that rely on flag algebras. Our hope is that as a result this text can serve others as a useful introduction to this powerful and beautiful method.
Original language | English |
---|---|
Article number | 3 |
Journal | Electronic Journal of Combinatorics |
Volume | 29 |
Issue number | 3 |
DOIs | |
State | Published - 2022 |
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Geometry and Topology
- Discrete Mathematics and Combinatorics
- Computational Theory and Mathematics
- Applied Mathematics