On the finite length scaling of ternary polar codes

Dina Goldin, David Burshtein

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The polarization process of polar codes over a ternary alphabet is studied. Recently it has been shown that the scaling of the blocklength of polar codes with prime alphabet size scales polynomially with respect to the inverse of the gap between code rate and channel capacity. However, except for the binary case, the degree of the polynomial in the bound is extremely large. In this work, it is shown that a much lower degree polynomial can be computed numerically for the ternary case. Similar results are conjectured for the general case of prime alphabet size.

Original languageEnglish
Title of host publicationProceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages226-230
Number of pages5
ISBN (Electronic)9781467377041
DOIs
StatePublished - 28 Sep 2015
EventIEEE International Symposium on Information Theory, ISIT 2015 - Hong Kong, Hong Kong
Duration: 14 Jun 201519 Jun 2015

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2015-June

Conference

ConferenceIEEE International Symposium on Information Theory, ISIT 2015
Country/TerritoryHong Kong
CityHong Kong
Period14/06/1519/06/15

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On the finite length scaling of ternary polar codes'. Together they form a unique fingerprint.

Cite this