Abstract
We model the evolution of a Jupiter-mass protoplanet formed by the disk instability mechanism at various radial distances accounting for the presence of the disk. Using three different disk models, it is found that a newly formed Jupiter-mass protoplanet at a radial distance of ≲5-10AU cannot undergo a dynamical collapse and evolve further to become a gravitational bound planet. We therefore conclude that giant planets, if formed by the gravitational instability mechanism, must form and remain at large radial distances during the first ∼105-106 years of their evolution. The minimum radial distances in which protoplanets of 1 Saturn-mass, 3 and 5 Jupiter-mass protoplanets can evolve using a disk model with M = 10-6 M ⊙ yr1 and α = 10-2 are found to be 12, 9, and 7AU, respectively. The effect of gas accretion on the planetary evolution of a Jupiter-mass protoplanet is also investigated. It is shown that gas accretion can shorten the pre-collapse timescale substantially. Our study suggests that the timescale of the pre-collapse stage does not only depend on the planetary mass, but is greatly affected by the presence of the disk and efficient gas accretion.
Original language | English |
---|---|
Article number | 90 |
Journal | Astrophysical Journal |
Volume | 756 |
Issue number | 1 |
DOIs | |
State | Published - 1 Sep 2012 |
Keywords
- planetary systems
- planets and satellites: general
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science